Search results for " Scanning Probe"
showing 9 items of 9 documents
Nanowire iron(III) coordination polymer based on 1,2,4-triazolo[1,5-a]pyrimidine and chloride ligands
2019
Abstract The neutral ligand 1,2,4-triazolo[1,5-a]pyrimidine (tp) has been employed to prepare a new coordination compound of Fe(III), [FeCl3(tp)2]n (1). Compound 1 was investigated by single crystal X-ray diffraction and found to be a coordination polymer forming a ladder structure based on metal–ligand interactions, while H-bonding and aromatic interactions contribute to the supramolecular self-assembly into a 3D nanostructured material. The polymeric assembly is retained also in solution, where a metallo-supramolecular polymer based on coordinative metal–ligand binding is present, as shown by dynamic light scattering (DLS) measurements. The redox properties of the Fe(III) coordination pol…
Microscale Marangoni actuation: All-optical and all-electrical methods
2006
We present experimental results from an all-optical microfluidic platform that may be complimented by a thin film all-electrical network. Using these configurations we have studied the microfluidic convective flow systems of silicone oil, glycerol, and 1,3,5-trinitrotoluene on open surfaces through the production of surface tension gradients derived from thermal gradients. We show that sufficient localized thermal variation can be created utilizing surface plasmons and/or engaging individually addressable resistive thermal elements. Both studies manipulate fluids via Marangoni forces, each having their unique exploitable advantages. Surface plasmon excitation in metal foils are the driving …
Photon Scanning Tunneling Microscopy and Reflection Scanning Microscopy
1991
The Photon Scanning Tunneling Microscope (PSTM) is the photon analogue to the Electron Scanning Tunneling Microscope (ESTM). It uses the evanescent field due to the total internal reflection (TIR) of a light beam in a prism modulated by a sample attached to the prism. The exponential decay of the evanescent field is characterized by the penetration depth dp and depends on the angle of incidence θ, the wavelength and polarization of the incident beam. Changes in intensity are monitored by a probe tip scanned over the surface, and the data are processed to generate an image of the sample. Images produced by a prototype instrument are shown to have a vertical resolution of about 3 A and a late…
Super-Resolution Scanning Near-Field Optical Microscopy
2007
Scanning near-field optical microscopy (SNOM) is a method to obtain information about the optical properties of a sample at a lateral resolution below the diffraction limit of far-field microscopy. In SNOM, a light source of a dimension which is small compared to the wavelength of light and which is held at a small distance from the sample is scanned across the surface of the sample. The modulation by the sample of the light emitted from the source is recorded as a signal. As a general rule one may say that the size of the source and the distance to the sample limit the resolution of SNOM. A radiating self-emitting point dipole may be regarded as an idealized SNOM source. With such a source…
<title>Scanning probe microscopy of nanocrystalline iridium oxide thin films</title>
2003
Structural investigations of nanocrystalline iridium oxide thin films, prepared by dc magnetron sputtering technique were performed by scanning probe microscopy (SPM). SPM studies, using both atomic force microscopy (AFM) and scanning tunnelling microscopy (STM), indicate that the thin films are composed of grains with a size of about 20-50 nm. Fine crystallinity and small RMS microroughness of the films, being well below 2 nm, make iridium oxide thin films promising candidates for nanolithographic applications. The possibility to perform nanolithograhpic processes at a scale of less than 150 nm was successfully examined in AFM and STM modes.© (2003) COPYRIGHT SPIE--The International Societ…
Imaging of photonic nanopatterns by scanning near-field optical microscopy
2002
We define photonic nanopatterns of a sample as images recorded by scanning near-field optical microscopy with a locally excited electric dipole as a probe. This photonic nanopattern can be calculated by use of the Green’s dyadic technique. Here, we show that scanning near-field optical microscopy images of well-defined gold triangles taken with the tetrahedral tip as a probe show a close similarity to the photonic nanopattern of this nanostructure with an electric dipole at a distance of 15 nm to the sample and tilted 45° with respect to the scanning plane.
Scanning probe microscopies applied to the study of the domain wall in a ferroelectric crystal.
2007
Summary Scanning near-field optical microscopy is capable of measuring the topography and optical signals at the same time. This fact makes this technique a valuable tool in the study of materials at nanometric scale and, in particular, of ferroelectric materials, as it permits the study of their domains structure without the need of chemical etching and, therefore, not damaging the surface (as will be demonstrated later). We have measured the scanning near-field optical microscopy transmission, as well as the topography, of an RbTiOPO4 single crystalline slab, which exhibits two different of macroscopic ferroelectric domains. A chemical selective etching has been performed to distinguish b…
Scanning electrochemical microscopy as a probe of Ag+ binding kinetics at Langmuir phospholipid monolayers
2005
A new method has been developed for measuring local adsorption rates of metal ions at interfaces based on scanning electrochemical microscopy (SECM). The technique is illustrated with the example of Ag+ binding at Langmuir phospholipid monolayers formed at the water/air interface. Specifically, an inverted 25 microm diameter silver disc ultramicroelectrode (UME) was positioned in the subphase of a Langmuir trough, close to a dipalmitoyl phosphatidic acid (DPPA) monolayer, and used to generate Ag+ via Ag electro-oxidation. The method involved measuring the transient current-time response at the UME when the electrode was switched to a potential to electrogenerate Ag+. Since the Ag+/Ag couple…
Photonic nanopatterns of gold nanostructures indicate the excitation of surface plasmon modes of a wavelength of 50-100 nm by scanning near-field opt…
2003
Scanning near-field optical microscopy images of metal nanostructures taken with the tetrahedral tip (T-tip) show a distribution of dark and bright spots at distances in the order of 25-50 nm. The images are interpreted as photonic nanopatterns defined as calculated scanning near-field optical microscopy images using a dipole serving as a light-emitting scanning near-field optical microscopy probe. Changing from a positive to a negative value of the dielectric function of a sample leads to the partition of one spot into several spots in the photonic nanopatterns, indicating the excitation of surface plasmons of a wavelength in the order of 50-100 nm in metal nanostructures.